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The Mixed volume and the Mixed

Discriminant, 1998, A. Barvinok’s paper in

“Lectures on Mathematical Programming:

ISMP-97”

K = (K1, ..., Kn) is a n-tuple of convex compact sub-

sets (i.e. convex bodies) in the Euclidean space Rn;

VK(λ1, ..., λn) =: V ol(λ1K1 + · · · + λnKn), λi ≥ 0.

Herman Minkowski proved that VK is a homogeneous

polynomial with non-negative coefficients. The mixed

volume:

V (K1, ..., Kn) =:
∂n

∂λ1...∂λn
VK(0, ..., 0).

i.e. the mixed volume V (K1, ..., Kn) is the coefficient

of the monomial ∏1≤i≤n λi in the Minkowski polynomial

VK.
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Let A = (A1, ..., An) be an n-tuple of n×n complex

matrices;

the corresponding determinantal polynomial is defined

as

DetA(λ1, ..., λn) = det(
∑

1≤i≤n
λiAi).

The mixed discriminant is defined as

D(A1, ..., An) =
∂n

∂λ1...∂λn
DetA(0, ..., 0).

i.e. the mixed discriminant D(A1, ..., An) is the coef-

ficient of the monomial ∏
1≤i≤n λi in the determinantal

polynomial DetA.
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Examples.

1.

Ki = {(t1, ..., tn) : 0 ≤ tj ≤ A(i, j), 1 ≤ j ≤ n},

the mixed volume of coordinate boxes Ki:

V (K1...Kn) = Per(A) =
∑

σ∈Sn

∏
1≤i≤n

A(i, σ(i)).

If each coordinate box Ki is a rectangle(parallelogram)

then computing the mixed volume V (B1, ..., Bn) is

“easy”.

2. Ki = {aei + bYi : 0 ≤ a, b ≤ 1} is a parallelogram,

A =: [Y1, ..., Yn]. Then the mixed volume

V (K1, ..., Kn) = MV (A) =:
∑

S⊂{1,...,n}
| det(AS,S)|.

If Qi = eie
T
i + YiY

T
i then the mixed discriminant

D(Q1, ..., Qn) = MD(A) =:
∑

S⊂{1,...,n}
(det(AS,S))2.

3. Both MD(A) and MV (A) are #P − Complete

even if the matrix A is unimodular.
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From the mixed volume of Ellipsoids to the

Mixed Discriminant

The convex bodies Ki are well-presented:

Given a weak membership oracle for Ki and a rational

n× n matrix Bi, a rational vector Yi ∈ Rn such that

Yi + Bi(Balln(1)) ⊂ Ki ⊂ Yi + n
√

n + 1Bi(Balln(1))

(1)

Let EB be the ellipsoid B(Balln(1)) in Rn. Then

V (EB1, ..., EBn) ≤ V (K1, ..., Kn) ≤ (n
√

n + 1)nV (EB1, ..., EBn).

[Barvinok, 1997]: Define vn =: V oln(Balln(1)). Then

the following inequalities hold:

3−
n+1

2 vnD
1
2(A1(A1)

T , ..., An(An)
T ) ≤ V (EA1...EAn) ≤ vnD

1
2(..)

(2)
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Suppose that we have an effectively computable esti-

mate F such that

γ(n) ≤ D(A1(A1)
T , ..., An(An)

T ))

F
≤ 1.

Then

√
γ(n)3−

n+1
2 ≤ V (K1, ..., Kn)√

Fv(n)
≤ n1.5n

Which gives the approximation factor

n1.5n3
n+1

2 (
√
γ(n))−1 ≥ nO(n).

Barvinok [1997] gave the poly-time randomized algo-

rithm with γ(n) = cn, c < 1.
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A deterministic algorithm for the Mixed

Discriminant, Geometric Programming,

Quantum Entanglement: 1998-2005

Let p ∈ Hom+(n, n) be a homogeneous polynomial

with nonnegative coefficients. Define the following quan-

tity, called Capacity:

Cap(p) =: inf
xi>0

p(x1, . . . , xn)∏
1≤i≤n xi

.

Clearly ∂n

∂x1···∂xn
p(0, 0, ..., 0) ≤ Cap(p).

Now,

log(Cap(p)) = inf
y1+...+yn=0

log(p(ey1, ..., eyn))

and the functional log(p(ey1, ..., eyn)) is convex. There-

fore log(Cap(p)) might be, with some extra care and

luck, effectively additively approximated using convex

programming tools and an oracle, deterministic or ran-

dom, evaluating the polynomial p.
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But we need a lower bound:

∂n

∂x1 · · · ∂xn
p(0, 0, ..., 0) ≥ γ(n)Cap(p), γ(n) > 0.

In the case of the mixed discriminant the corresonding

polynomial

p(x1, ..., xn) = det(∑1≤i≤n xiQi), where the matrices

Qi � 0 are PSD. Easy to evaluate deterministically!
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Boils down to the following result:

Theorem 0.1: Let n-tuple A = (A1, . . . , An) of her-

mitian n× n PSD matrices be doubly-stochastic:

tr(Ai) = 1, 1 ≤ i ≤ n;
∑

1≤i≤n
Ai = I.

Then the mixed discriminant

D(A) =:
∂n

∂x1, . . . , ∂xn
DetA(0, . . . , 0) ≥ n!

nn
(3)

The equality in (3) is attained iff Ai = 1
nI, 1 ≤ i ≤

n.

Solution of R. Bapat’s conjecture (1989), stated for

real symmetric PSD matrices, generalization of Van der

Waerden conjecture for the permanent; proved by L.G.

(1999), final publication (2006))

The reason for the result: optimality condition for

miny1+...+yn=0 log(DetQ(ey1, ..., eyn)) states that the tu-

ple (P (ey1Q1)P, ..., P (eynQn)P ), P = (∑1≤i≤n eyiQi)
−1

2
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is doubly-stochastic. This observation and Theorem(0.1)

imply that

n!

nn
≤ D(Q1, ..., Qn)

Cap(DetQ)
≤ 1.

Can put γ(n) = n!
nn ≈ e−n.

My proof is a very non-trivial adaptation of Ego-

rychev’s proof of Van Der Waerden conjecture for the

permanent, which I learned from Knut’s 1981 Monthly

exposition.

Did not actually need doubly-stochasticity, it served as

a tool; non-convex optimization with semi-definite con-

straints.

The proof is very matrix-oriented, crucially uses the

group action:

D(XA1X
∗, ..., XAnX

∗) = det(XX∗)D(A1, ..., An).

10



Got a deterministic poly-time(not strongly polyno-

mial) algorithm to approximate the mixed discrim-

inant with the factor en and the mixed volume with

the factor nO(n). Can we get a factor cn deterministi-

cally for the mixed volume? NO!

In the oracle setting, even for the single volume the

factor is greater than
(
Ω

(
n

log n

))n
2 (Barany-Furedi

bound).

Can we get factor cn using a randomized poly-time

algorithm?

Can we get a better factor for the mixed discrim-

inant if the ranks Rank(Qi) are small?

Is there a simpler proof?

11



A revelation, 2003-2004-2005-...

Definition 0.2: A homogeneous polynomial p ∈ HomC(m, n)

is H-Stable if

|p(z1, ..., zm)| > 0; Re(zi) > 0, 1 ≤ i ≤ m.

Example 0.3: Consider a bivariate homogeneous poly-

nomial p(z1, z2) = (z2)
nP (z1

z2
), where P is some univari-

ate polynomial. Then p is H-Stable iff the roots of P

are non-positive real numbers. This assertion is just a

rephrasing of the next set equality:

C− {z1

z2
: Re(z1), Re(z2) > 0} = {x ∈ R : x ≤ 0}.

This simple bivariate observation gives the connection

between H-Stability and Hyperbolicity:
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Fact 0.4: A homogeneous polynomial p ∈ HomC(m, n)

is H-Stable iff it is e-hyperbolic, e = (1, ..., 1), i.e. the

roots of p(x1 − t, ..., xm − t) = 0 are real for all real

vectors X ∈ Rm, and its hyperbolic cone contains the

positive orthant Rm
++, i.e. the roots of p(X − te) = 0

are positive real numbers for all positive real vectors

X ∈ Rm
++.

Moreover p
p(X) ∈ Hom+(m, n) for all X ∈ Rm

++ and

|p(z1, ..., zm)| ≥ |p(Re(z1), ..., Re(zm))| : Re(zi) ≥

0,

1 ≤ i ≤ m.
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Note that a determinantal polynomial DetQ is H-

Stable for non-trivial PSD tuples:

Qi � 0, ∑1≤i≤n Qi � 0.

A homogeneous polynomial q ∈ Hom+(n, n) is called

doubly-stochastic if

∂

∂xi
q(1, 1, . . . , 1) = 1, 1 ≤ i ≤ n.

Alternative definition:

q(x1, ..., xn) ≥
∏

1≤i≤n
xi, xi > 0; q(e) = 1. (4)

A determinantal polynomial DetQ is H-Stable and

doubly-stochastic for doubly-stochastic tuples (Q1, ..., Qn)

is doubly-stochastic !?!?... A possible generalization of

Van Der Waerden and Bapat’s conjectures, but how to

prove it?

All previous proofs heavily relied on the matrix struc-

ture.
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The Capacity, which appeared as an algorithmic tool,

happened to be the “saviour”!
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Theorem 0.5: Let p ∈ Hom+(n, n) be H-Stable

polynomial and

G(i) =
i− 1

i


i−1

, i > 1; G(1) = 1.

Then the following inequality holds

1 ≥
∂n

∂x1...∂xn
p(0, . . . , 0)

Cap(p)
≥ ∏

2≤i≤n
G( min(i, degp(i))).

(5)

Actually, G(i) = wdv(i)
wdv(i−1), where vdw(i) = i!

ii
and

this function G is strictly decreasing on [0,∞).

Thus ∏
2≤i≤n G( min(i, degp(i))) ≥ G(2) · · ·G(n) = n!

nn

Corollary 0.6: Assume WLOG that Cap(p) > 0.

Then
∂n

∂x1...∂xn
p(0, . . . , 0)

Cap(p)
≥ n!

nn
(6)

Equality in (6) is attained iff p(x1, ..., xn) = (a1x1 +

... + anxn)
n; ai > 0, 1 ≤ i ≤ n.
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Proof: Step 1.

Lemma 0.7: Consider an univariate polynomial

R(t) = ∑
0≤i≤k ait

i; ai ≥ 0, ak > 0. If the roots of

R are real( nec. non-positive) then

R′(0) ≥ G(k) inf
t>0

R(t)

t
, G(k) =

k − 1

k


k−1

(7)

Proof: The case R(0) = 0 is trivial: G(k) ≥ 1 and

R′(0) = inft>0
R(t)

t .

Otherwise, R(t) = R(0) ∏1≤i≤k(1 + bit) where bi >

0, 1 ≤ i ≤ k.

Assume WLOG that R(0) = 1. We get, using AM/GM

inequality, that

R(t) ≤ Pow(t) =: (1 +
R′(0)t

k
)k

Easy to compute that inft>0
Pow(t)

t = R′(0)(G(k))−1.

Which leads to

R′(0)(G(k))−1 = inf
t>0

Pow(t)

t
≥ inft>0

R(t)

t
.
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Step 2.

Fix positive numbers x1, ..., xn−1 and consider the

univariate polynomial R(t) = p(x1, ..., xn−1, t). Note

that the bivariate homogeneous polynomial

Q(s, t) = p(sx1, ..., sxn−1, t) = snR(t/s) is H-Stable.

Therefore, the roots of R are non-positive real numbers.

The degree deg(R) = degp(n) =: k and

R(t) = p(x1, ..., xn−1, t) ≥ Cap(p)(
∏

1≤i≤n−1
xi)t, t ≥ 0.

Lemma(0.7) gives the inequality

R′(0) ≥ (Cap(p)
∏

1≤i≤n−1
xi)G(degp(n)).

Note that R′(0) = ∂
∂xn

p(x1, . . . , xn−1, 0) =: qn−1(x1, . . . , xn−1).

We finally get the main inequality:

Cap(qn−1) ≥ G(degp(n))Cap(p)
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Step 3. Define the following polynomials

qi ∈ Hom+(i, i), 1 ≤ i ≤ n− 1:

qi(x1, . . . , xi) =
∂n−i

∂xi+1 . . . ∂xn
p(x1, . . . , xi, 0, . . . , 0).

Note that q1(x1) = ∂n

∂x1...∂xn
p(0)x1, Cap(q1) = ∂n

∂x1...∂xn
p(0)

and degqi
(i) ≤ min(i, degp(i)).

Using Gauss-Lukas Theorem, we get that qi is either

zero or H-Stable. Step 2 gives that

Cap(qi−1) ≥ G(degqi
(i))Cap(qi).

Since degqi
(i) ≤ min(i, degp(i)) abd G is decreasing,

we get that

Cap(qi−1) ≥ G(min(i, degp(i))Cap(qi). (8)

Finally we just multiply inequalities (8):

∂n

∂x1 . . . ∂xn
p(0) = Cap(q1) ≥ Cap(p)

∏
2≤i≤n

G(min(i, degp(i)).
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Specializing to the permanent and the mixed discrim-

inant: the polynomial for permanent Per(A) is

ProdA(x1, ..., xn) =
∏

1≤i≤n

∑
1≤j≤n

A(i, j)xj.

I.e. the mixed derivative of ProdA is equal to Per(A).

If A is non-negative and ProdA 6= 0 then ProdA is

H-Stable.

degProdA
(j) = |col(j)| = number of non-zero entries in

jth column.

If A is doubly-stochastic then Cap(ProdA) = 1.

Theorem 0.8: If A is a doubly-stochastic n × n

matrix then

Per(A) ≥ ∏
2≤j≤n

G(min(|col(j)|, j)) ≥ ∏
2≤i≤n

G(j) =
n!

nn
.

If |col(j)| ≤ k < n for k + 1 ≤ j ≥ n then

Per(A) ≥
k − 1

k


(k−1)(n−k) k!

kk
>


k − 1

k


k−1


n

(9)
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A. Schrijever (1998): A = {d(i,j)
n : 1 ≤ i, j ≤ n},

All rows and columns of the integer matrix D sum

to k ≤ n (i.e. k-regular bipartite graph with multiple

edges). Then

Per(A) ≥
k − 1

k


(k−1)n

. (10)

The inequality (9) gives a stronger version of the very

discrete Schrijvers’s inequality (10). Moreover, our in-

equality works in much more general real valued case.

Amazingly, the exponent
(
k−1
k

)k−1
is optimal. This op-

timality follows from a forgotten H. Wilf’s 1966 paper.

Was rediscovered by Schrijver and Valiant in 1981.

In the case of the mixed discriminant of doubly-stochastic

tuples:

D(A1, ..., An) ≥
∏

2≤j≤n
G(min(Rank(Aj), j)).

This leads to the deterministic poly-time algorithms to

approximate as ∑
S⊂{1,...,n} | det(AS,S)| as well
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∑
S⊂{1,...,n} | det(AS,S)|2 with the factor 2n

nm .
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Back to the mixed volume: the Minkowski polyno-

mial

V oln(λ1K1 + · · · + λnKn)) = VK(λ1, ..., λn)

is not necessary H-Stable if n ≥ 3. But essentially

the same proof works!

Theorem 0.9: Let K = (K1, ..., Kn) be a tuple of

conbex bodies in Rn. Then the mixed volume

Cap(VK) ≥ V (K1, ..., Kn) ≥
n!

nn
Cap(VK). (11)

The inequalities (11) lead to a randomized poly-time

algorithm to approximate the mixed volume with the

factor en.

Why it works: the polynomials

qi(x1, . . . , xi) =
∂n−i

∂xi+1 . . . ∂xn
p(x1, . . . , xi, 0, . . . , 0)

are not H-Stable, but (qi)
1
i are log-concave on Ri

+.

A lot of hyperbolic (i.e. H-Stable ) stuff can gener-
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alized to such Strongly Log-Concave polynomials

and even entire functions.
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A few open problems

1. Let p ∈ Hom+(n, n) be H-Stable and doubly-

stochastic, Z = (z1, ..., zn) ∈ Cn.

Is the vector Γ = (γ1, ..., γn) consisting of all the

roots of the equation p(z1 − t, ..., zn − t) = 0

majorized by the vector Z, i.e. Γ = AZ for some

DS matrix A ?

2. Let us consider two H-Stable polynomials p, q ∈

Hom+(m, n):

p(x1, ..., xm) = ∑
r1+...+rm=n ar1,...,rm

∏
1≤i≤m xri

i ,

q(x1, ..., xm) = ∑
r1+...+rm=n br1,...,rm

∏
1≤i≤m xri

i ,

and a nonnegative vector (l1, ..., lm) with
∑

1≤i≤m li = n.

Let us assume that

infxi>0,1≤i≤m
p(x1,...,xm)∏

1≤i≤m x
li
i

=: A > 0,

infxi>0,1≤i≤m
q(x1,...,xm)∏

1≤i≤m x
li
i

=: B > 0.
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Then the following inequality holds:

< p, g >=:
∑

r1+...+rm=n
ar1,...,rmbr1,...,rm ≥ AB

vdw(nm)

vdw(n)m

(12)

Define

< p, g >F=:
∑

r1+...+rm=n
ar1,...,rmbr1,...,rm(r1)!...(rm)!

Is it true that (even for li = n
m, 1 ≤ i ≤ m and

multilinear polynomials)

< p, g >F≥ AB
n!

mn
.

The reason: the Van Der Waerden conjecture for

the permanent sharply quantifies Hall’s theorem on

the rank of the intersection of two transveral ma-

troids, the Bapat’s conjecture sharply quantifies Rado’s

theorem on the rank of the intersection of one transver-

sal and one geometric matroid.

The inequality (12) does similar thing for the in-

tersection of two geometric matroids (even for the
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intersection of sets of vertices of special integer poly-

matroids). But the inequality (12), although non-

obvious and quite cool, does not seem sharp.
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A few “optimizational” comments.

1. Let p ∈ Hom+(n, n) be H-Stable

p(x1, ..., xn) =
∑

r1+...+rn=n
ar1,...,rn

∏
1≤i≤m

xri
i .

Existence and uniqueness in infy1+...+yn=0 log(p(ey1, ..., eyn)):

a2,0,1,...,1, a0,2,1,...,1, ..., a1,...,1,2,0, a1,...,1,0,2 > 0. (13)

I.e. n(n− 1) conditions, can be checked by a deter-

ministic Strongly poly-time Black-Box algorithm;

provides good bounds on a ball containing the so-

lution.

2. If a minimum exists then either (13) hold or there

exists a partition {1, ..., n} = ∪1≤j≤kXj such that

p(x1, ..., xn) =
∏

1≤j≤k
pj(xi, i ∈ Xj).

This factorization can be also effectively computed.

3. Weak log-concavity: p
1
n is concave on

half-lines {X + tY : t ≥ 0} : X,Y ∈ Rn
++.
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Implies the inequality:

p(SH(x1, ..., xn)) ≤ p(x1, ..., xn), where xi > 0, 1 ≤

i ≤ n and

SH(x1, ..., xn) = (y1, ..., yn) : yi =
f (x1, ..., xn)
∂

∂xi
f (x1, ..., xn)

.

Corollary 0.10: Let p ∈ Hom+(n, n) be weakly

log-concave. Suppose that Cap(f ) > 0,

log(Cap(f )) ≤ log(f (x1, ..., xn)) ≤ log(Cap(f )) +

ε; ε ≤ 1
10

and ∏
1≤i≤n xi = 1.

Then

∑
1≤i≤n

(1−
xi

∂
∂xi

f (x1, ..., xn)

f (x1, ..., xn)
)2 ≤ 10ε . (14)
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